Acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces: a comprehensive periodic DFT study.

نویسندگان

  • Carlos Jimenez-Orozco
  • Elizabeth Florez
  • Andres Moreno
  • Ping Liu
  • Jose A Rodriguez
چکیده

A comprehensive study of acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces was carried out by means of calculations based on periodic density functional theory, using the Perdew-Burke-Ernzerhof exchange-correlation functional. It was found that the bonding of acetylene was significantly affected by the electronic and structural properties of the carbide surfaces. The adsorbate interacted with metal and/or carbon sites of the carbide. The interaction of acetylene with the TiC(001) and ZrC(001) surfaces was strong (binding energies higher than -3.5 eV), while moderate acetylene adsorption energies were observed on δ-MoC(001) (-1.78 eV to -0.66 eV). Adsorption energies, charge density difference plots and Mulliken charges suggested that the binding of the hydrocarbon to the surface had both ionic and covalent contributions. According to the C-C bond lengths obtained, the adsorbed molecule was modified from acetylene-like into ethylene-like on the δ-MoC(001) surface (desired behavior for hydrogenation reactions) but into ethane-like on TiC(001) and ZrC(001). The obtained results suggest that the δ-MoC(001) surface is expected to have the best performance in selective hydrogenation reactions to convert alkynes into alkenes. Another advantage of δ-MoC(001) is that, after C2H2 adsorption, surface carbon sites remain available, which are necessary for H2 dissociation. However, these sites were occupied when C2H2 was adsorbed on TiC(001) and ZrC(001), limiting their application in the hydrogenation of alkynes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adsorption and Desulfurization Mechanism of Thiophene on Layered FeS(001), (011), and (111) Surfaces: A Dispersion-Corrected Density Functional Theory Study

Layered transition-metal chalcogenides have emerged as a fascinating new class of materials for catalysis. Here, we present periodic density functional theory (DFT) calculations of the adsorption of thiophene and the direct desulfurization reaction pathways on the (001), (011), and (111) surfaces of layered FeS. The fundamental aspects of the thiophene adsorption, including the initial adsorpti...

متن کامل

CO adsorption on Cu(111) and Cu(001) surfaces: improving site preference in DFT calculations

CO adsorption on Cu(111) and Cu(001) surfaces has been studied within ab-initio density functional theory (DFT). The structural, vibrational and thermodynamic properties of the adsorbate-substrate complex have been calculated. Calculations within the generalized gradient approximation (GGA) predict adsorption in the threefold hollow on Cu(111) and in the bridge-site on Cu(001), instead of on-to...

متن کامل

DFT-D2 simulations of water adsorption and dissociation on the low-index surfaces of mackinawite (FeS).

The adsorption and dissociation of water on mackinawite (layered FeS) surfaces were studied using dispersion-corrected density functional theory (DFT-D2) calculations. The catalytically active sites for H2O and its dissociated products on the FeS {001}, {011}, {100}, and {111} surfaces were determined, and the reaction energetics and kinetics of water dissociation were calculated using the clim...

متن کامل

Structure and stability of the (001) a-quartz surfacew

The structure and surface energies of the cleaved, reconstructed, and fully hydroxylated (001) a-quartz surface of various thicknesses are investigated with periodic density functional theory (DFT). The properties of the cleaved and hydroxylated surface are reproduced with a slab thickness of 18 atomic layers, while a thicker 27-layer slab is necessary for the reconstructed surface. The perform...

متن کامل

Structure and stability of the (001) alpha-quartz surface.

The structure and surface energies of the cleaved, reconstructed, and fully hydroxylated (001) alpha-quartz surface of various thicknesses are investigated with periodic density functional theory (DFT). The properties of the cleaved and hydroxylated surface are reproduced with a slab thickness of 18 atomic layers, while a thicker 27-layer slab is necessary for the reconstructed surface. The per...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 19 2  شماره 

صفحات  -

تاریخ انتشار 2017